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ABSTRACT

The well known Karman-Trefftz conformal transformation, consisting
of repeated applications of the same basic formula, were found to be
quite successful to body, wing, and simple wing-body cross sections in
recent years. In this report, it is intended to extend this grid
generation technique to cross sections of more complex forms, and also
intended to make the grid generation process more automated.

Computer programs were written for the selection of "hinge points"
on cross section with angular shapes, the Karman-Trefftz transformation
of arbitrary shapes, and the special transform of hinge point on the
imaginery axis.

The present work is served as a feasibility study for the future
application of conformal mapping grid generation to complex three
dimensional configurations. Examples such as Orbiter vehicle section
and a few others were used in the present study. Computer programs are
not included in this report.
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INTRODUCTION

Conformal mapping is one of the several techniques used in
numerical grid generation (1-2). For shapes with corners, the
Karman-Trefftz transformation is commonly used to smoothen the angle
while mapping the physical configuration into near -circle on the
computational plane. Grids can be easily generated on computational
plane, and inverse transform will map the grids back to the physical
plane. On these grids, the appropriate numerical methods can be applied
to solve the flow dynamics problems. Just a few are listed in the
reference (3-4). Care must be maintained for using those transforms and
for complex geometries, difficulties could be encountered.

In the present work, it is intended to extend and automate the
transforms for any arbitrary shapes. This should include the hinge
points selections, the Karman-Trefftz with arbitrary branch cuts,
automatic grid generation on computational plane, and the inverse
transforms to the physical plane. Computer programs were written but
not included in this report, the results are shown graphically. For
these graphics, the vertical axis and horizontal axis are not at exactly
the same scale, so, there is a slight distortion for the figures. To
show the sequence of transformation, the figures on the same page should
be read from left to right and from top to bottom.
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LOCATE THE HINGE POINTS

Hinge points are used in the Karman-Trefftz transformation to
smoothen the corners of the configurations to be transformed. They're
located at these corners or very close to them. If a large number of
coordinates are needed to describe the geometries, direct observations
to locate the hinge points may be time consuming and less accurate. So,
a simple program was written to automate this process of selection.

Refer to figure 1, for an arbitrary shape, a number of complex
coordinates (Z (I), I = 1, N) are used to define the shape in the
complex plane. Start from one end, Z (1), compute the angles at all the
coordinates in sequence, compare with the pre-determined values of

maximum deviations from 180°, the location of the hinge points (as well
as the § used in the transformation) can be selected by the computer.
In our scheme, not all the locations exceed the limits are considered as
hinge points, only the locations that represent the largest curvature
locally are selected as hinge points. The computer program is proved to
be successful on Shuttle sections as well as a few other geometries.
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THE KARMAN-TREFFTZ TRANSFORMATION

The Karman-Trefftz transformation is well known in the publications
(5). In the present work, it is intended to write a program that can be
applied to any hinge point not on the imaginery axis. For each hinge
point, formulate the following Karman-Trefftz transforms

w(z)- ( Z(r)-H)&

= —_— |
wi(I)+I 2 (T)+H T4
S <=
QT ~X

where Z (I) coordinates used to define the body

W(I) < transformed coordinates of the body

o - measure of interior angle at hinge point
H - coordinate of the hinge point

* = complex conjugate of H

Refer to figure 2, at the hinge point, the plane is divided into
four quarters but labeled them quarter 0 to quarter 9. Each coordinate
of the body is in one particular quarter. The quarter numbers for
coordinate Z (1) and .

Z (N) can be obtained easily. The quarter number for other goordinates
can be obtained by comparing with the adjacent coordinates. This should
be done in sequence from Z (1) to Z (N) or from Z (N) to Z (1). It can
also be done from

Z (1) to hinge point and then from Z (N) to hinge point. According to
the general formulas mentioned in the figure, the Karman-Trefftz
transformation can be completed. The difficult job of locating the
branch cut is easily solved. Based on this concept, a computer program
was written for the transformation. It proves to be successful as can
be seen from a test example shown in figure 3. Other examples using
this program are shown in the later sections.
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Fig. 3 Test example of Karman-Trefftz Transform from
physical plane to computational plane
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CONFORMAL MAPPING FOR HINGE POINT ON IMAGINERY AXIS

For hinge point on imaginery axis, the ‘standard Karman-Trefftz
transformation fails. But a modified transform formula can be used

wW(T)-; ( 2(1)-H J{

-— e ——————
wi(T)+¢

- 2(1)+H
S X

=24
o 1is shown in figure 4. This special transform should be applied

to coordinate Z (1), if applied to coordinate Z (N), i in the formula
should be replaced by ~i. This transform can convert the angle at Z (1)

or Z (N) to 90°. At the same time, if it 1s properly applied, it could
1ift the other hinge point on the imaginery axis. Special attention
should be paid to the location of real axis (refer to figure 4), but
within the allowable range, it has minor effect to the transformation as
shown in figure 5. In figure 6 and figure 7, an example of rocket
section is transformed in sequence from physical plane to computational
plane. In this case, both the special transform and the standard
Karman-Trefftz transforms are used. In figure 8 and figure 9, similar
transformations were applied to an Orbiter vehicle section. Both
transforms were done by computer programs. From these examples, it
shows that with the suitable combination of both transforms, many
problems with complex geometries can be solved.
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Fig. 5 Effect of real axis position variations
(First figure is before transformation.)
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Fig. 6 The sequence to transform a finned rocket section into
near circle in computational plane (continue in Fig. 7)
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Fig. 8 Orbiter vehicle section transformation from physical plane
to computational plane (continue in Fig. »
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GRID GENERATION ON COMPUTATIONAL PLANE AND THE INVERSE TRANSFORMATION

A simple program has been written to generate grids on
computational plane. The program is written in such a way that there is
always a line passing the hinge point. With minor changes, the programs
used earlier can be used for inverse transformations. The grids on the
computational plane can be mapped to the physical plane. In figure 10,
the grids on an Orbiter vehicle section are shown on computational plane
as well as on physical plane. In figure 11, that is for rocket section.

In conclusion, the computer programs developed in this study are
quite general and can be used to solve complex shapes. But further
study is needed to locate or generate hinge points automatically on a
smooth but large curvature configuration.
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Fig. 10 Grids on an Orbiter vehicle section on computational plane
and- on physical plane
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